Maths Class 9 Chapter 2 Polynomials

Maths Class 9 Chapter 2 Polynomials


Important Concepts and Formulas

1.      A polynomial p(x) in one variable x is an algebraic expression in x of the form p(x) = anxn + an – 1xn – 1 + . . . + a2x2 + a1x + a0.
where a0, a1, a2, . . ., an are constants and an 0.
a0, a1, a2, . . ., an are respectively the coefficient of x0, x, x2, . . ., xn, and n is called the degree of the polynomial. Each of anxn + an – 1xn – 1 + . . . + a2x2 + a1x + a0 , with an 0, is called a term of the polynomial p(x).

2.      A polynomial with one, two and three terms are called monomial, binomial and trinomial, respectively.

3.      A polynomial of degree one is called a linear polynomial, a polynomial of degree two is called a quadratic polynomial and polynomial of degree three is called a cubic polynomial.

4.      A real number ‘a’ is a zero of a polynomial p(x) if p(a) = 0. In this case, a is also called a root of the equation p(x) = 0.

5.      Every linear polynomial in one variable has unique zero, a non-zero constant polynomial has no zero, and every real number is a zero of the zero polynomial.

6.      Remainder Theorem: If p(x) is any polynomial of degree greater than or equal to 1 and p(x) is divided by the linear polynomial (x – a), then the remainder is p(a).

7.      Factor Theorem: (x – a) is a factor of the polynomial p(x), if p(a) = 0. Also, if (x – a) is a factor of p(x), then p(a) = 0.

8.      (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx

9.      (x + y)3 = x3 + y3 + 3xy(x + y)

10. (x – y)3 = x3 – y3 – 3xy(x – y)

11. x3 + y3 + z3 – 3xyz = (x + y + z) (x2 + y2 + z2 – xy – yz – zx)

2 Comments

Please do not enter any spam link in the comment box.

  1. On the off chance that you check the historical backdrop of the individuals who notwithstanding exiting or ceasing tutoring have gotten fruitful, you would find that seemed to have discovered their life's motivation thus sought after those objectives and, all the more significantly, they got some sort of instruction later. education

    ReplyDelete
Post a Comment
Previous Post Next Post