NCERT Solutions for Class 10 Maths Ex 8.1

NCERT Solutions for Class 10 Maths Ex 8.1

In this post, you will find the NCERT solutions for class 10 maths ex 8.1. These solutions are based on the latest syllabus of NCERT Maths class 10.


NCERT Solutions for Class 10 Maths Ex 8.1


1. In ABC, right-angled at B, AB = 24 cm, BC = 7 cm. Determine:

(i) sin A, cos A

(ii) sin C, cos C

 

Solution: Consider a right-angled triangle ABC, right-angled at B.

Using Pythagoras theorem, we have

AC2 = AB2 + BC2

        = (24)2 + (7)2 = 576 + 49 = 625

Taking square root of both side, we get

AC = 25 cm

(i) sin A = BC/AC = 7/25, cos A = AB/AC = 24/25 

(ii) sin C = AB/AC = 24/25, cos C = BC/AC = 7/25  

 

2. In the following figure, find tan P – cot R:

Solution:  Using Pythagoras theorem, we have

PR2 = PQ2 + QR2

(13)2 = (12)2 + QR2

 QR2 =169 – 144 = 25

Taking square root of both side, we get

QR = 5 cm

Therefore, tan P – cot R = QR/PQ – QR/PQ = 5/12 – 5/12 = 0

 

3. If sin A = ¾, calculate cos A and tan A.

 

Solution: Consider ABC is a triangle right-angled at B.

It is given that sin A = ¾. In ABC, sin A = BC/AC.

Let BC = 3k and AC = 4k

Then, Using Pythagoras theorem, we have

AB2 + BC2 = AC2

AB2 = AC2 BC2

AB2 = (4k)2 (3k)2

AB2 = 16k2 9k2

AB2 = 7k2

Taking square root of both side, we get

AB = k√7

Therefore, cos A = AB/AC = k√7/4k = √7/4

And tan A = BC/AB = 3k/ k√7 = 3/√7

 

4. Given 15 cot A = 8, find sin A and sec A.

 

Solution: Consider ABC is a triangle right-angled at B.

It is given that 15 cot A = 8

cot A = 8/15

And cot A = AB/BC

Let AB = 8k and BC = 15k

Then using Pythagoras theorem, we have

AC2 = AB2 + BC2 

       = (8k)2 + (15k)2

       = 64k2 + 225k2 

    AC2 = 289k2 

Taking square root of both side, we get

AC = 17k

Therefore, sin A = BC/AC = 15k/17k = 15/17

And sec A = AC/AB = 17k/8k = 17/8

 

5. Given sec θ = 13/12, calculate all other trigonometric ratios.

 

Solution: Consider a triangle ABC in which A = Î¸ and B = 90°.

It is given that sec θ = 13/12 and sec θ = AC/AB.

Let AC = 13k and AB = 12k

Then, using Pythagoras theorem, we have

BC2 = AC2 – AB2 

       = (13k)2 – (12k)2

       = 169k2 – 144k2

       = 25k2 

BC2 = 25k2

Taking square root of both side, we get

BC 5k

Therefore, sin θ = BC/AC = 5k/13k = 5/13  

cos θ = AB/AC = 12k/13k = 12/13

tan θ = BC/AB = 5k/12k = 5/12

cot θ = AB/BC = 12k/5k = 12/5

cosec θ = AC/BC = 13k/5k = 13/5

 

6. If A and B are acute angles such that cos A = cos B, then show that A = B.

 

Solution: In right-angled ∆ABC, A and B are acute angles.

Then cos A = AC/AB and cos B = BC/AB

But cos A = cos B       [Given]

⇒ AC/AB = BC/AB

 AC = BC

 A = B                           [Angles opposite to equal sides are equal.]

 

7. If cot θ = 7/8, evaluate:

(i) 


(ii) cot2 θ

 

Solution: Consider a triangle ABC in which A = Î¸ and B = 90°.

It is given that cot θ = 7/8 and from the figure we have cot θ = AB/BC.

Let AB = 7k and BC = 8k

Then, using Pythagoras theorem, we have

AC2 = AB2 + BC2

AC2 = (7k)2 + (8k)2 

       = 49k2 + 64k2 

AC2 = 113k2

Taking square root of both side, we get

AC = k√113

Therefore, sin θ = BC/AC = 8k/k√113 = 8/√113  

Cos θ = AB/AC = 7k/k√113

(i) 


(ii) 

8. If 3 cot A = 4, check whetheror not.


Solution: Consider a triangle ABC in which B = 90°.

It is given that 3 cot A = 4

cot A = 4/3

Let AB = 4k and BC = 3k

Then, using Pythagoras theorem, we have

AC2 = AB2 + BC2 

AC2 = (4k)2 + (3k)2 

AC2 = 16k2 + 9k2

AC2 = 25k2

Taking square root of both sides, we get

 AC = 5k

Therefore, sin A = BC/AC = 3k/5k = 3/5

Cos A = AB/AC = 4k/5k = 4/5

And tan A = BC/AB = 3k/4k = 3/4  

Now, L.H.S. =  

= (16 – 9) / (16 + 9) = 7/25

R.H.S. = cos2 A – sin2 A = (4/5)2 – (3/5)2 

= 16/25 – 9/25 = 7/25

Since, L.H.S. = R.H.S.

Therefore, 

 

9. In ABC right-angled at B, if tan A = 1/3, find the value of:

(i) sin A cos C + cos A sin C

(ii) cos A cos C – sin A sin C

 

Solution: Consider a triangle ABC in which B = 90°.

It is given that tan A = 1/3 and from the figure tan A = BC/AB

Let BC = k and AB = √3k

Then, using Pythagoras theorem, we have

AC2 = AB2 + BC2 

AC2 = (√3k)2 + (k)2 

AC2 = 3k2 + k2

AC2 = 4k2

Taking square roots of both sides, we have

AC = 2k

Therefore, sin A = BC/AC = k/2k = 1/2

And cos A = AB/AC = √3k/2k = √3/2

For C, base = BC, perpendicular = AB and hypotenuse = AC

Therefore, sin C = AB/AC = √3k/2k = √3/2

And cos A = BC/AC = k/2k = 1/2

(i)  sin A cos C + cos A sin C = ½ × ½ + √3/2 × √3/2 

= ¼ + ¾ = 4/4 = 1

(ii) cos A cos C – sin A sin C = √3/2 × ½ – ½ × √3/2

= √3/4 – √3/4 = 0

 

10. In PQR, right-angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.

 

Solution: In PQR, right-angled at Q, it is given that PR + QR = 25 cm and PQ = 5 cm.

Let QR = x cm  

Then, PR = 25 QR

PR = (25 x) cm

Using Pythagoras theorem, we have

PR2 = QR2 + PQ2

(25 – x)2 = (x)2 + (5)2

 625 – 50x + x2 = x2 + 25

 –50x = –600

 x = 12

Therefore, QR = 12 cm and PR = 25 – 12 = 13 cm

So, sin P = QR/PR = 12/13

cos P = PQ/PR = 5/13

And tan P = QR/PQ = 12/5

 

11. State whether the following are true or false. Justify your answer.

(i) The value of tan A is always less than 1.

(ii) sec A = 12/5 for some value of angle A.

(iii) cos A is the abbreviation used for the cosecant of angle A.

(iv) cot A is the product of cot and A.

(v) sin Î¸ = 4/3 for some angle Î¸.

 

Solution: (i) False, because sides of a right-angled triangle may have any length, so tan A may have any value.

(ii) True, because sec A is always greater than 1.

(iii) False, because cos A is the abbreviation of cosine A.

(iv) False, because cot A is not the product of ‘cot’ and A. ‘cot’ is separated from A has no meaning.

(v) False, because sin θ cannot be greater than 1.

 

Please do not enter any spam link in the comment box.

Post a Comment (0)
Previous Post Next Post