NCERT Solutions for Class 10 Maths Ex 8.2

NCERT Solutions for Class 10 Maths Ex 8.2

In this post, you will find the NCERT solutions for class 10 maths ex 8.2. These solutions are based on the latest curriculum of NCERT Maths class 10.


NCERT Solutions for Class 10 Maths Ex 8.2


1. Evaluate:

(i) sin 60° cos 30° + sin 30° cos 60°

(ii) 2 tan2 45° + cos2 30° – sin2 60°

(iii) 

(iv) 

(v) 

 

Solution: (i) sin 60° cos 30° + sin 30° cos 60°

= 

= ¾ + ¼ = 4/4 = 1

(ii) 2 tan2 45° + cos2 30° – sin2 60°

= 

= 2 + ¾ - ¾ = 2

(iii) 

= 

= 

= 

= 

= 

(iv) 

= 

=   

=   


(v) 

=

= 

2. Choose the correct option and justify your choice:

(i)

(A) sin 60°            (B) cos 60°            (C) tan 60°            (D) sin 30°

(ii)   

(A) tan 90°            (B) 1                       (C) sin 45°              (D) 0

(iii) sin 2A = 2 sin A is true when A =

(A) 0°                      (B) 30°                   (C) 45°                     (D) 60°

(iv)   

(A) cos 60°              (B) sin 60°             (C) tan 60°              (D) sin 30°

Solution: (i) (A) 

=

= √3/2 = sin 60°

(ii) (D)   

= (1 – 1)/(1 + 1)  

= 0/2 = 0

(iii) (A) If A = 0, then

Sin 2A = sin 0° = 0 and 2 sin A = 2 sin 0°

= 2 × 0 = 0

Sin 2A = 2 sin A when A = 0

(iv) (C) 

=

= √3 = tan 60°

 

3. If tan (A + B) = √3 andfind A and B.


Solution: tan (A + B) = √3 

 tan (A + B) = tan 60°

 A + B = 60°                      ………. (i)

tan (A – B) = 1/√3

 tan (A – B) = tan 30°

 A – B = 30°                      ………. (ii)

Adding equations (i) and (ii), we get

2A = 90°

 A = 45°

Putting the value of A in equation (i), we get

45° + B = 60°

 B = 15°

 

4. State whether the following are true or false. Justify your answer.

(i) sin (A + B) = sin A + sin B

(ii) The value of sin θ increases as Î¸ increases.

(iii) The value of cos θ increases as Î¸ increases.

(iv) sin θ = cos θ for all values of Î¸.

(v) cot A is not defined for A = 0°.

 

Solution: (i) False, because for A = 60° and B = 30°,

sin (A + B) = sin (60° + 30°) = sin 90° = 1

And sin A + sin B = sin 60° + sin 30° = √3/2 + ½ = (√3 + 1)/2 

Therefore, sin (A + B) ≠ sin A + sin B

(ii) True, because

It is clear, the value of sin θ increases as Î¸ increases.

(iii) False, because

It is clear, the value of cos θ decreases as θ increases.

(iv) False, since it is only true for Î¸ = 45°.

 sin 45° = 1/√2 = cos 45°

(v) True, because tan 0° = 0 and cot 0° = 1/tan 0°

= 1/0 i.e. undefined.

Please do not enter any spam link in the comment box.

Post a Comment (0)
Previous Post Next Post