MCQs Questions for Class 11 Maths Chapter 4 Principle of Mathematical Induction

MCQs Questions for Class 11 Maths Chapter 4 Principle of Mathematical Induction

MCQs Questions for Class 11 Maths Chapter 4 Principle of Mathematical Induction

In this 21st century, Multiple Choice Questions (MCQs) play a vital role to prepare for a competitive examination. CBSE board has also brought a major change in its board exam patterns. In most of the competitive examinations, only MCQ Questions are asked.

In future, if you want to prepare for competitive examination, then you should focus on the MCQs questions. Thus, let’s solve these MCQs questions to make our foundation strong.

In this post, you will find 15 MCQs questions for class 11 maths chapter 4 principle of mathematical induction.

 

MCQs Questions for Class 11 Maths Chapter 4 Principle of Mathematical Induction

1. For principle of mathematical induction to be true, what type of number should ‘n’ be?
(a) Whole number
(b) Natural number
(c) Rational number
(d) Any form of number

Answer: a

 

2. The sum of the series 1³ + 2³ + 3³ + ……….. + n³ is
(a) {(n + 1)/2}²
(b) {n/2}²
(c) n(n + 1)/2
(d) {n(n + 1)/2}²

Answer: d

 

3. For any natural number n, 7ⁿ – 2ⁿ is divisible by

(a) 3
(b) 4
(c) 5
(d) 7

Answer: c

 

4.  By the principle of mathematical induction, 24n – 1 is divisible by which of the following?
(a) 8
(b) 3
(c) 5
(d) 7

Answer: a

 

5. 1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ….. + 1/{n(n + 1)} is equal to
(a) n(n + 1)
(b) n/(n + 1)
(c) 2n/(n + 1)
(d) 3n/(n + 1)

Answer: b

 

6. 1 ∙ 2 + 2 ∙ 3 + 3 ∙ 4 + ….. + n(n + 1) is equal to

(a) n(n + 1)(n + 2)
(b) {n(n + 1)(n + 2)}/2
(c) {n(n + 1)(n + 2)}/3
(d) {n(n + 1)(n + 2)}/4

Answer: c

 

7. If 103n + 24k + 1. 9 + k, is divisible by 11, then what is the least positive value of k?
(a) 7
(b) 6
(c) 8
(d) 10

Answer: d

 

8. The sum of the series 1² + 2² + 3² + ………..n² is
(a) n(n + 1)(2n + 1)
(b) n(n + 1)(2n + 1)/2
(c) n(n + 1)(2n + 1)/3
(d) n(n + 1)(2n + 1)/6

Answer: d

 

9. n(n + 1) (n + 5) is a multiple of ……… for all n N.

(a) 2
(b) 3
(c) 5
(d) 7

Answer: b

 

10. If P(n) = n(n2 – 1), then which of the following does not divide P(k + 1)?
(a) k
(b) k + 2
(c) k + 3
(d) k + 1

Answer: c

 

11. For all positive integers n, the number n(n² − 1) is divisible by:

(a) 36
(b) 24
(c) 6
(d) 16

Answer: c

 

12. n2 + 3n is always divisible by which number, provided n is an integer?
(a) 2
(b) 3
(c) 4
(d) 5

Answer: a

 

13. Find the number of shots arranged in a complete pyramid the base of which is an equilateral triangle, each side containing n shots.
(a) n(n + 1)(n + 2)/3
(b) n(n + 1)(n + 2)/6
(c) n(n + 2)/6
(d) (n + 1)(n + 2)/6

Answer: b

 

14. What will be P(k + 1) for P(n) = n3 (n + 1)?
(a) (k + 1)4
(b) k4 + 5k3 + 9k2 + 7k + 2
(c) k4 + 6k3 + 9k2 + 7k + 2
(d) k4 + 3k3 + 9k2 + 6k + 2

Answer: b

 

15. For all n N, 72n − 48n − 1 is divisible by:
(a) 25
(b) 2304
(c) 1234
(d) 26

Answer: b

Please do not enter any spam link in the comment box.

Post a Comment (0)
Previous Post Next Post