Maths Quiz for Class 8 Factorisation

Maths Quiz for Class 8 Factorisation

Maths Quiz for Class 8 Factorisation

In this post, we are providing 20 online maths quiz questions for class 8 factorisation. Online maths quiz will take around 20 minutes to complete it.

Question 1: Factorise 4x + 12y.
A) 4(3x + y)
B) 2(x + 3y)
C) 4(x + 3y)
D) (x + 3y)
Explanation: 4x + 12y = 4(x + 3y)
Question 2: Factorise 8xy + 6x2y2.
A) 2xy(4 + 3xy)
B) 2xy(4 + xy)
C) 2xy(3 + 4xy)
D) xy(4 + 3xy)
Explanation: 8xy + 6x2y2 = 2xy(4 + 3xy)
Question 3: Factorise a2bc + ab2c + abc2.
A) abc(a + b + c)
B) ab(a + b + c)
C) ac(a + b + c)
D) bc(a + b + c)
Explanation: a2bc + ab2c + abc2 = abc(a + b + c)
Question 4: Factorise 15x2 + 20xy2 + 10z2.
A) 5(3x + 4y2 + 2z2)
B) 5x(3x + 4y2 + 2z2)
C) 5x(3x + 4y2 + 2z)
D) 5x(3x + 4y + 2z2)
Explanation: 15x2 + 20xy2 + 10xz2 = 5x(3x + 4y2 + 2z2)
Question 5: Factorise 4ab + 6b + 6a + 9 by regrouping the terms.
A) (2a + 3) (2b + 2)
B) (2a + 3) (2b + 3)
C) (2a + 2) (2b + 3)
D) (2a + 3) (4b + 3)
Explanation: 4ab + 6b + 6a + 9 = (4ab + 6b) + (6a + 9) = 2b(2a + 3) + 3(2a + 3) = (2a + 3) (2b + 3)
Question 6: Factorise x2 + x3 + x4 + x5 using regrouping.
A) (1 + x) (1 + x2)
B) x (1 + x) (1 + x2)
C) x2 (1 + x) (1 + x2)
D) x2 (1 + x) (1 + x3)
Explanation: x2 + x3 + x4 + x5 = (x2 + x3) + (x4 + x5) = x2(1 + x) + x4(1 + x) = (1 + x) (x2 + x4) = (1 + x) x2 (1 + x2) = x2 (1 + x) (1 + x2)
Question 7: Factorise 12a2b + 16ab2.
A) ab(3a + 4b)
B) 4ab(3a + 4b)
C) 4ab(4a + 4b)
D) 4ab(3a + 16b)
Explanation: 12a2b + 16ab2 = 4ab(3a + 4b)
Question 8: Factorise 12xy + 8yz + 15px + 10zp using regrouping.
A) (3x + 4z) (4y + 5p)
B) (3x + 2z) (3y + 5p)
C) (3x + 2z) (4y + 3p)
D) (3x + 2z) (4y + 5p)
Explanation: 12xy + 8yz + 15px + 10zp = (12xy + 8yz) + (15px + 10zp) = 4y(3x + 2z) + 5p(3x + 2z) = (3x + 2z) (4y + 5p)
Question 9: Factorise 9x2 + 24xy + 16y2 using the identity (a + b)2 = a2 + 2ab + b2.
A) (3x + 4y)2
B) (3x + y)2
C) (x + 4y)2
D) (3x + 4y + 6)2
Explanation: 9x2 + 24xy + 16y2 = (3x)2 + 2 × 3x × 4y + (4y)2 = (3x + 4y)2
Question 10: Factorise 25x2 – 70xy + 49y2 using the identity (a b)2 = a2 2ab + b2.
A) (x – 7y)2
B) (5x – y)2
C) (5x – 7y)2
D) (5x – 7y + 10)2
Explanation: 25x2 – 70xy + 49y2 = (5x)2 – 2 × 5x × 7y + (7y)2 = (5x – 7y)2
Question 11: Factorise 81p2 – 256q2 using a2 – b2 = (a + b) (a – b ).
A) (9p + 16q) (9p + 16q)
B) (9p + 16q) (9p – 16q)
C) (9p – 16q) (9p – 16q)
D) (9p + 16q) (p – q)
Explanation: 81p2 – 256q2 = (9p)2 – (16q)2 = (9p + 16q) (9p – 16q)
Question 12: Factorise 32p4 – 50q4.
A) 2(4p2 + 5q2) (4p2 + 5q2)
B) 2(4p2 + 5q2) (4p2 – 5q2)
C) (4p2 + 5q2) (4p2 – 5q2)
D) 2(4p2 – 5q2) (4p2 – 5q2)
Explanation: 32p4 – 50q4 = 2(16p4 – 25q4) = 2[(4p2)2 – (5q2)2] = 2(4p2 + 5q2) (4p2 – 5q2)
Question 13: Factorise 16x4 – 81y4.
A) (4x2 + 9y2) (2x + 3y) (2x – 3y)
B) (4x2 + 9y2) (2x + 3y) (2x + 3y)
C) (4x2 + 9y2) (2x – 3y) (2x – 3y)
D) (4x2 + 9y2) (4x + 9y) (4x – 9y)
Explanation: 16x4 – 81y4 = (4x2)2 – (9y2)2 = (4x2 + 9y2) (4x2 – 9y2) = (4x2 + 9y2) [(2x)2 – (3y)2] = (4x2 + 9y2) (2x + 3y) (2x – 3y)
Question 14: Factorise x2 + 7x + 12 by splitting the middle term.
A) (x + 4) (x – 3)
B) (x + 3) (x + 3)
C) (x + 4) (x + 4)
D) (x + 4) (x + 3)
Explanation: x2 + 7x + 12 = x2 + (4 + 3)x + 12 = x2 + 4x + 3x + 12 = x(x + 4) + 3(x + 4) = (x + 4) (x + 3)
Question 15: Factorise x2 + 4x – 60 by splitting the middle term.
A) (x – 10) (x + 6)
B) (x – 10) (x – 6)
C) (x + 10) (x – 6)
D) (x + 10) (x + 6)
Explanation: x2 + 4x – 60 = x2 + (10 – 6)x – 60 = x2 + 10x – 6x – 60 = x(x + 10) – 6(x + 10) = (x + 10) (x – 6)
Question 16: Factorise 7x2 – 5x – 12 by splitting the middle term.
A) (x + 1) (7x + 12)
B) (x + 1) (7x – 12)
C) (x – 1) (7x – 12)
D) (x – 1) (7x + 12)
Explanation: Here, –12 × 7 = –84 and –12 + 7 = –5. Therefore, 7x2 – 5x – 12 = 7x2 + (7 – 12)x – 12 = 7x2 + 7x – 12x – 12 = 7x(x + 1) – 12(x + 1) = (x + 1) (7x – 12)
Question 17: 42x2y2z2 ÷ 6xyz = __________
A) 7xyz
B) 7x2yz
C) 7xy2z
D) 7xyz2
Explanation: 42x2y2z2 ÷ 6xyz = 7x2-1y2-1z2-1 = 7xyz
Question 18: (8x3 + 6x2 + 2x) ÷ 2x = ____________
A) 4x2 + 3x + 2
B) 4x2 + 6x + 1
C) 4x2 + 3x + 1
D) 4x2 + 3x2 + 1
Explanation: (8x3 + 6x2 + 2x) ÷ 2x = 2x(4x2 + 3x + 1) ÷ 2x = 4x2 + 3x + 1
Question 19: Divide (x2 + 9x + 20) by (x + 4).
A) x + 4
B) x + 5
C) x + 3
D) x + 2
Explanation: Let us factorise x2 + 9x + 20 first. x2 + 9x + 20 = x2 + 5x + 4x + 20 = x(x + 5) + 4(x + 5) = (x + 4) (x + 5). Now, (x2 + 9x + 20) ÷ (x + 4) = (x + 4) (x + 5) ÷ (x + 4) = x + 5
Question 20: Divide (3x2 – 13x + 12) by (x – 3).
A) x – 4
B) 3x + 4
C) 3x – 4
D) x + 4
Explanation: Let us factorise 3x2 – 13x + 12 first. 3x2 – 13x + 12 = 3x2 – 9x – 4x + 12 = 3x(x – 3) – 4(x – 3) = (x – 3) (3x – 4). Now, (3x2 – 13x + 12) ÷ (x – 3) = (x – 3) (3x – 4) ÷ (x – 3) = 3x – 4

Report Card

Total Questions Attempted: 0

Correct Answers: 0

Wrong Answers: 0

Percentage: 0%

Please do not enter any spam link in the comment box.

Post a Comment (0)
Previous Post Next Post